第三步,由推论5知 p < 2n,由反证法假设知 p ≤ n,再由推论3知 p ≤ 2n/3,因此(2n)!/(n!n!)=Πp≤2n/3 ps(p)。
………………
第七步,利用推论8可得:(2n)!/(n!n!)≤Πp≤√2n ps(p)·Π√2n<p≤2n/3 p ≤Πp≤√2n ps(p)·Πp≤2n/3 p!
思路畅通,程诺一路写下来,不见任何阻力,一个小时左右便完成一半多的证明步骤。
连程诺本人,都惊讶了好一阵。
原来我现在,不知不觉间已经这么厉害了啊!!!
程诺叉腰得意一会儿。
随后,便是低头继续苦逼的列着证明公式。
第八步,由于乘积中的第一组的被乘因子数目为√2n 以内的素数数目,即不多于√2n/2 - 1 (因偶数及 1 不是素数)……由此得到:(2n)!/(n!n!)<(2n)√2n/2-1 · 42n/3。
第九步,(2n)!/(n!n!)是(1+1)2n 展开式中最大的一项,而该展开式共有 2n 项(我们将首末两项 1 合并为 2),因此(2n)!/(n!n!)≥ 22n / 2n = 4n / 2n。两端取对数并进一步化简可得:√2n ln4 < 3 ln(2n)。
下面,就是最后一步。
由于幂函数√2n 随 n 的增长速度远快于对数函数 ln(2n),因此上式对于足够大的 n 显然不可能成立。
至此,可说明, Bertrand 假设成立。
论文的草稿部分,算是正式完工。
而且完工的时间,比程诺预想的要早了整整一半时间。